Microtubule-dependent transport and dynamics of vimentin intermediate filaments
نویسندگان
چکیده
We studied two aspects of vimentin intermediate filament dynamics-transport of filaments and subunit exchange. We observed transport of long filaments in the periphery of cells using live-cell structured illumination microscopy. We studied filament transport elsewhere in cells using a photoconvertible-vimentin probe and total internal reflection microscopy. We found that filaments were rapidly transported along linear tracks in both anterograde and retrograde directions. Filament transport was microtubule dependent but independent of microtubule polymerization and/or an interaction with the plus end-binding protein APC. We also studied subunit exchange in filaments by long-term imaging after photoconversion. We found that converted vimentin remained in small clusters along the length of filaments rather than redistributing uniformly throughout the network, even in cells that divided after photoconversion. These data show that vimentin filaments do not depolymerize into individual subunits; they recompose by severing and reannealing. Together these results show that vimentin filaments are very dynamic and that their transport is required for network maintenance.
منابع مشابه
Regulation of microtubule-associated motors drives intermediate filament network polarization
Intermediate filaments (IFs) are key players in the control of cell morphology and structure as well as in active processes such as cell polarization, migration, and mechanoresponses. However, the regulatory mechanisms controlling IF dynamics and organization in motile cells are still poorly understood. In this study, we investigate the mechanisms leading to the polarized rearrangement of the I...
متن کاملA novel taxol-induced vimentin phosphorylation and stabilization revealed by studies on stable microtubules and vimentin intermediate filaments.
To understand how protein phosphorylation modulates cytoskeletal organization, we used immunofluorescence microscopy to examine the effects of okadaic acid, a serine/threonine protein phosphatase inhibitor, and taxol, a microtubule-stabilizing agent, on stable (acetylated and detyrosinated) microtubules, vimentin intermediate filaments and other cytoskeletal elements in CV-1 cells. Okadaic acid...
متن کاملChemotactic peptide-induced changes of intermediate filament organization in neutrophils during granule secretion: role of cyclic guanosine monophosphate.
In neutrophils activated to secrete with formyl-methionyl-leucyl-phenylalanine, intermediate filaments are phosphorylated transiently by cyclic guanosine monophosphate (cGMP)-dependent protein kinase (G-kinase). cGMP regulation of vimentin organization was investigated. During granule secretion, cGMP levels were elevated and intermediate filaments were transiently assembled at the pericortex to...
متن کاملRapid Movements of Vimentin on Microtubule Tracks: Kinesin-dependent Assembly of Intermediate Filament Networks
The assembly and maintenance of an extended intermediate filament (IF) network in fibroblasts requires microtubule (MT) integrity. Using a green fluorescent protein-vimentin construct, and spreading BHK-21 cells as a model system to study IF-MT interactions, we have discovered a novel mechanism involved in the assembly of the vimentin IF cytoskeleton. This entails the rapid, discontinuous, and ...
متن کاملIntermediate Filaments: Vimentin Moves in
Vimentin intermediate filaments move bi-directionally along microtubules in the cell. Recent work has identified the microtubule motor cytoplasmic dynein as the missing inward-directed motor that drives this movement.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 26 شماره
صفحات -
تاریخ انتشار 2015